CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking
Abstract:
This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asynchronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45 k neurons (spiking cells), up to 5 M synapses, performs 12 G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.
Año de publicación:
2009
Keywords:
Fuente:
google
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Red neuronal artificial
- Simulación por computadora
Áreas temáticas:
- Ciencias de la computación