CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking


Abstract:

This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asynchronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45 k neurons (spiking cells), up to 5 M synapses, performs 12 G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.

Año de publicación:

2009

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Red neuronal artificial
    • Simulación por computadora

    Áreas temáticas:

    • Ciencias de la computación

    Contribuidores: