A recurrent fuzzy neuron for on line modelling of nonlinear systems


Abstract:

This paper presents a recurrent fuzzy neuron (RFN) which facilitates nonlinear mapping from an input space to an output space. The synaptic junctions are characterized by a set of IF-THEN rules and recurrent characteristics provide dynamic properties to the neuron, allowing its application to on line modelling for a variety of nonlinear systems. The effectiveness of this neuron to synthesize complex nonlinear models, is illustrated by simulation results related to on line prediction of chaotic behavior and modelling of time varying nonlinear systems.

Año de publicación:

2002

Keywords:

  • Neural dynamics
  • Nonlinear models
  • fuzzy systems
  • Dynamic modelling

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Red neuronal artificial
  • Algoritmo
  • Sistema no lineal

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 4: Educación de calidad
Procesado con IAProcesado con IA