A recurrent fuzzy neuron for on line modelling of nonlinear systems
Abstract:
This paper presents a recurrent fuzzy neuron (RFN) which facilitates nonlinear mapping from an input space to an output space. The synaptic junctions are characterized by a set of IF-THEN rules and recurrent characteristics provide dynamic properties to the neuron, allowing its application to on line modelling for a variety of nonlinear systems. The effectiveness of this neuron to synthesize complex nonlinear models, is illustrated by simulation results related to on line pbkp_rediction of chaotic behavior and modelling of time varying nonlinear systems.
Año de publicación:
2002
Keywords:
- Neural dynamics
- Nonlinear models
- fuzzy systems
- Dynamic modelling
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Red neuronal artificial
- Algoritmo
- Sistema no lineal
Áreas temáticas:
- Ciencias de la computación