A recurrent fuzzy neuron for on line modelling of nonlinear systems


Abstract:

This paper presents a recurrent fuzzy neuron (RFN) which facilitates nonlinear mapping from an input space to an output space. The synaptic junctions are characterized by a set of IF-THEN rules and recurrent characteristics provide dynamic properties to the neuron, allowing its application to on line modelling for a variety of nonlinear systems. The effectiveness of this neuron to synthesize complex nonlinear models, is illustrated by simulation results related to on line pbkp_rediction of chaotic behavior and modelling of time varying nonlinear systems.

Año de publicación:

2002

Keywords:

  • Neural dynamics
  • Nonlinear models
  • fuzzy systems
  • Dynamic modelling

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Red neuronal artificial
  • Algoritmo
  • Sistema no lineal

Áreas temáticas:

  • Ciencias de la computación