A scalable stochastic programming approach for the design of flexible systems
Abstract:
We study the problem of designing systems in order to minimize cost while meeting a given flexibility target. Flexibility is attained by enforcing a joint chance constraint, which ensures that the system will exhibit feasible operation with a given target probability level. Unfortunately, joint chance constraints are complicated mathematical objects that often need to be reformulated using mixed-integer programming (MIP) techniques. In this work, we cast the design problem as a conflict resolution problem that seeks to minimize cost while maximizing flexibility. We propose a purely continuous relaxation of this problem that provides a significantly more scalable approach relative to MIP methods and show that the formulation delivers solutions that closely approximate the Pareto set of the original joint chance-constrained problem.
Año de publicación:
2019
Keywords:
- Flexibility
- design
- Complex systems
- Joint chance constraints
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas de Dewey:
- Programación informática, programas, datos, seguridad
- Dirección general
- Tecnología (Ciencias aplicadas)
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 12: Producción y consumo responsables
- ODS 17: Alianzas para lograr los objetivos