A semilocal convergence result for Newton's method under generalized conditions of Kantorovich
Abstract:
From Kantorovich's theory we establish a general semilocal convergence result for Newton's method based fundamentally on a generalization required to the second derivative of the operator involved. As a consequence, we obtain a modification of the domain of starting points for Newton's method and improve the a priori error estimates. Finally, we illustrate our study with an application to a special case of conservative problems.
Año de publicación:
2014
Keywords:
- Conservative problem
- semilocal convergence
- A priori error estimates
- The Newton-Kantorovich theorem
- Majorizing sequence
- Newton's method
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Análisis numérico
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis