A semilocal convergence result for Newton's method under generalized conditions of Kantorovich


Abstract:

From Kantorovich's theory we establish a general semilocal convergence result for Newton's method based fundamentally on a generalization required to the second derivative of the operator involved. As a consequence, we obtain a modification of the domain of starting points for Newton's method and improve the a priori error estimates. Finally, we illustrate our study with an application to a special case of conservative problems.

Año de publicación:

2014

Keywords:

  • Conservative problem
  • semilocal convergence
  • A priori error estimates
  • The Newton-Kantorovich theorem
  • Majorizing sequence
  • Newton's method

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Análisis numérico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis