A storage-centric analysis of MapReduce workloads: File popularity, temporal locality and arrival patterns


Abstract:

A huge increase in data storage and processing requirements has lead to Big Data, for which next generation storage systems are being designed and implemented. However, we have a limited understanding of the workloads of Big Data storage systems. We consider the case of one common type of Big Data storage cluster: a cluster dedicated to supporting a mix of MapReduce jobs. We analyze 6-month traces from two large Hadoop clusters at Yahoo! and characterize the file popularity, temporal locality, and arrival patterns of the workloads. We identify several interesting properties and compare them with previous observations from web and media server workloads. To the best of our knowledge, this is the first study of how MapReduce workloads interact with the storage layer. © 2012 IEEE.

Año de publicación:

2012

Keywords:

  • mapreduce
  • BIG DATA
  • HDFS
  • Access patterns

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos
  • Ciencias de la computación

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos