Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory


Abstract:

At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present pbkp_redictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at ≈850 GPa and ≈7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and 3C8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets. © 2006 by The National Academy of Sciences of the USA.

Año de publicación:

2006

Keywords:

  • Phase transitions
  • molecular dynamics
  • Metalization
  • High pressure
  • melting

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Química física
  • Cristalografía
  • Física