A study on output normalization in multiclass SVMs


Abstract:

The use of binary support vector machines (SVMs) in multi-classification is addressed in this paper. Margins associated to the bi-classifiers, since they depend on the geometrical disposition of the classes being separated, are, in general, of various magnitudes. In order to overcome this scaling problem, a normalization process should be applied on the SVMs' outputs. Thus, a new normalization approach is presented based on the convex hulls that contain the classes to be separated. Furthermore, a theoretical study is developed which justifies the proposed approach, and an interpretation is provided. An empirical study is also carried out to compare this normalization with others found in the literature. © 2012 Elsevier B.V. All rights reserved.

Año de publicación:

2013

Keywords:

  • 1-v-r SVM
  • Convex hull
  • Multiclassification
  • kernel methods

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Programación informática, programas, datos, seguridad