A study on the parallelization of moeas to predict the patient’s response to the onabotulinumtoxina treatment


Abstract:

This work deals with the decrease of the computational cost in the task of feature weighting for the predictive models of the response to the treatment of migraine with OnabotulinumtoxinA (BoNT-A). More specifically, we consider the multiobjective evolutionary algorithms (MOEAs) that support parallelization. All this with the aim of improving the training times of predictive models of response to the treatment. The results obtained show that accuracies close to 84 % are obtained while training times are decreased from 8 to less than 2 hours when using 8 threads. All in all, this work remarkably reduces the feature weighting execution time in comparison with Simulated Annealing, while getting similar values of accuracy.

Año de publicación:

2019

Keywords:

  • Pareto Front
  • Parallelism
  • MOEA
  • Migraine
  • Feature weighting

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 3: Salud y bienestar
  • ODS 8: Trabajo decente y crecimiento económico
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA