A support vector machine music algorithm


Abstract:

This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches. © 1963-2012 IEEE.

Año de publicación:

2012

Keywords:

  • direction of arrival (DOA)
  • support vector machine (SVM)
  • MUltiple SIgnal Characterization (MUSIC)
  • Minimum Variance Distortionless Response (MVDR)

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Algoritmo

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos