Categorization of types of internautes based on their navigation preferences within educational environments


Abstract:

In this article, the state of the art of data mining applied to obtaining frequent navigation behaviors in an educational environment is described. The procedure used by the data mining algorithms chosen to classify Internet users based on their browsing preferences which is explained. An explanation of the records that are used for the training of the algorithms is made, and finally a comparison of the efficiency of the categorization is made.

Año de publicación:

2019

Keywords:

  • HUMAN BEHAVIOR
  • Sequential patterns
  • Internet models
  • Data Mining
  • States
  • Frequent sequences
  • Itemsets
  • Behavior
  • Patterns

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Tecnología educativa

Áreas temáticas:

  • Escuelas y sus actividades; educación especial
  • Funcionamiento de bibliotecas y archivos
  • Interacción social