Cauchy Integral Formulae in Quaternionic Hermitean Clifford Analysis


Abstract:

The theory of complex Hermitean Clifford analysis was developed recently as a refinement of Euclidean Clifford analysis; it focusses on the simultaneous null solutions, called Hermitean monogenic functions, of two Hermitean Dirac operators constituting a splitting of the traditional Dirac operator. In this function theory, the fundamental integral representation formulae, such as the Borel-Pompeiu and the Clifford-Cauchy formula have been obtained by using a (2 × 2) circulant matrix formulation. In the meantime, the basic setting has been established for so-called quaternionic Hermitean Clifford analysis, a theory centred around the simultaneous null solutions, called q-Hermitean monogenic functions, of four Hermitean Dirac operators in a quaternionic Clifford algebra setting. In this paper we address the problem of establishing a quaternionic Hermitean Clifford-Cauchy integral formula, by following a (4 × 4) circulant matrix approach. © 2011 Springer Basel AG.

Año de publicación:

2012

Keywords:

  • Cauchy integral formula
  • Quaternionic Hermitean Clifford analysis

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Modelo matemático
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis