A systematic literature review on the use of machine learning in precision livestock farming
Abstract:
This article presents a systematic literature review of recent works on the use of machine learning (ML) in precision livestock farming (PLF), focusing on two areas of interest: grazing and animal health. This review: (i) highlights opportunities for ML in the livestock sector; (ii) shows the current sensors, software and techniques for data analysis; (iii) details the increasing openness of data sources. It was found that the use of ML in PLF is in a stage of development and has several research challenges. Examples of such challenges are: (i) to develop hybrid models for diagnosis and prescription as a tool for the prevention and control of animal diseases; (ii) to bring together the grazing and animal health issues; (iii) to give autonomy to PLF using autonomous cycles of data analysis tasks and meta-learning; and (iv) to bring together soil and pasture variables because, for both, animal health and animal grazing, the variables used are only behavioral and environmental.
Año de publicación:
2020
Keywords:
- Animal health
- grazing
- industry 4.0
- Precision Livestock Farming
- Machine learning
- Artificial Intelligence
- Big Data Analytics
Fuente:
Tipo de documento:
Review
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Medios documentales, educativos, informativos; periodismo
- Ganadería