A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case


Abstract:

We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T=0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system. © 2013 Elsevier B.V. All rights reserved.

Año de publicación:

2013

Keywords:

  • Sociophysics
  • Thermodynamic models
  • Phase transitions
  • Axelrod model

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Física estadística

Áreas temáticas:

  • Ciencias de la computación