Challenges of evaluating the quality of software engineering experiments


Abstract:

Good-quality experiments are free of bias. Bias is considered to be related to internal validity (e.g., how well experiments are planned, designed, executed, and analysed). Quality scales and expert opinion are two approaches for assessing the quality of experiments. Aim: Identify whether there is a relationship between bias and quality scale and expert opinion pbkp_redictions in SE experiments. Method: We used a quality scale to determine the quality of 35 experiments from three systematic literature reviews. We used two different procedures (effect size and response ratio) to calculate the bias in diverse response variables for the above experiments. Experienced researchers assessed the quality of these experiments. We analysed the correlations between the quality scores, bias and expert opinion. Results: The relationship between quality scales, expert opinion and bias depends on the technology exercised in the experiments. The correlation between quality scales, expert opinion and bias is only correct when the technologies can be subjected to acceptable experimental control. Both correct and incorrect expert ratings are more extreme than the quality scales. Conclusions: A quality scale based on formal internal quality criteria will pbkp_redict bias satisfactorily provided that the technology can be properly controlled in the laboratory.

Año de publicación:

2013

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Book Part

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ingeniería de software
    • Software

    Áreas temáticas:

    • Ciencias de la computación