Changes in metabolic profiling of whiteleg shrimp (Penaeus vannamei) under hypoxic stress
Abstract:
Hypoxia is a common concern in shrimp aquaculture, affecting growth and survival. Although recent studies have revealed important insights into hypoxia in shrimp and crustaceans, knowledge gaps remain regarding this stressor at the molecular level. In the present study, a gas chromatography–mass spectrometry (GC–MS)-based metabolomics approach was employed to characterize the metabolic signatures and pathways underlying responses of Pacific white shrimp (Penaeus vannamei) to hypoxia and to identify associated candidate biomarkers. We compared metabolite profiles of shrimp haemolymph before (0 h) and after exposure to hypoxia (1 & 2 h). Dissolved oxygen levels were maintained above 85 % saturation in the control and before hypoxia, and 15 % saturation in the hypoxic stress treatment. Results showed 44 metabolites in shrimp haemolymph that were significantly different between before and after hypoxia exposure. These metabolites were energy-related metabolites (e.g., intermediates of citric acid cycle, lactic acid, alanine), fatty acids and amino acids. Pathway analysis revealed 17 pathways that were significantly affected by hypoxia. The changes in metabolites and pathways indicate a shift from aerobic to anaerobic metabolism, disturbance in amino acid metabolism, osmoregulation, oxidative damage and Warburg effect-like response caused by hypoxic stress. Among the altered metabolites, lactic acid was most different between before and after hypoxia exposure and had the highest accurate value for biomarker identification. Future investigations may validate this molecule as a stress biomarker in aquaculture. This study contributes to a better understanding of hypoxia in shrimp and crustaceans at the metabolic level and provides a base for future metabolomics investigations on hypoxia.
Año de publicación:
2022
Keywords:
- lactic acid
- Whiteleg shrimp
- Oxygen managment
- Metabolomics
- Warburg effect-like effect
- Aquaculture
- GC–MS
- Stress biomarkers
- Hypoxia
- Penaeus Vannamei
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Metabolismo
- Ecología
- Metabolismo
Áreas temáticas:
- Microorganismos, hongos y algas