Channeling of protons through carbon nanotubes embedded in dielectric media


Abstract:

We investigate how the dynamic polarization of the carbon atom valence electrons affects the spatial distributions of protons channeled in (11, 9) single-wall carbon nanotubes placed in vacuum and embedded in various dielectric media. The initial proton speed is varied between 3 and 8 a.u., corresponding to the energies between 0.223 and 1.59 MeV, respectively, while the nanotube length is varied between 0.1 and 0.8 νm. The spatial distributions of channeled protons are generated using a computer simulation method, which includes the numerical solving of the proton equations of motion in the transverse plane. We show that the dynamic polarization effect can strongly affect the rainbow maxima in the spatial distributions, so as to increase the proton flux at distances from the nanotube wall of the order of a few tenths of a nanometer at the expense of the flux at the nanotube center. While our findings are connected to the possible applications of nanosized ion beams created with the nanotubes embedded in various dielectric media for biomedical research and in materials modification, they also open prospects of applying ion channeling for detecting and locating atoms and molecules intercalated inside the nanotubes. © 2008 IOP Publishing Ltd.

Año de publicación:

2008

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ciencia de materiales
    • Nanopartícula

    Áreas temáticas:

    • Magnetismo