Chaotic thresholds for the piecewise linear discontinuous system with multiple well potentials
Abstract:
In this paper we investigate the bifurcations and the chaos of a piecewise linear discontinuous (PWLD) system based upon a rig-coupled SD oscillator, which can be smooth or discontinuous (SD) depending on the value of a system parameter, proposed in [18], showing the equilibrium bifurcations and the transitions between single, double and triple well dynamics for smooth regions. All solutions of the perturbed PWLD system, including equilibria, periodic orbits and homoclinic-like and heteroclinic-like orbits, are obtained and also the chaotic solutions are given analytically for this system. This allows us to employ the Melnikov method to detect the chaotic criterion analytically from the breaking of the homoclinic-like and heteroclinic-like orbits in the presence of viscous damping and an external harmonic driving force. The results presented here in this paper show the complicated dynamics for PWLD system of the subharmonic solutions, chaotic solutions and the coexistence of multiple solutions for the single well system, double well system and the triple well dynamics.
Año de publicación:
2015
Keywords:
- Heteroclinic-like orbit
- Homoclinic-like orbit
- Melnikov method
- SD oscillator
- PWLD system
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema no lineal
- Sistema no lineal
- Sistema no lineal
Áreas temáticas:
- Análisis
- Física
- Mecánica clásica