Characterisation of carbon nanotube foam for improved gas storage capability
Abstract:
Advanced fuel cells require efficient hydrogen storage tanks. This study presents preliminary results on a novel compound based on an alumina substrate coated with carbon nanotube foam (CNF) that is expected to improve substantially the hydrogen storage capability. A catalytic chemical vapour deposition (CCVD) technique was applied for obtaining the desired structure. It involved the organometallic compound ferrocene (a simultaneous source of iron and carbon), H2 as reducing gas, and Ar as dragging gas. The CNF-alumina system formed was characterised by means of scanning and transmission electron microscopy (SEM, TEM, resp). Applying the BET method with N2 as carrier gas, it was found that the novel compound exhibits a high specific surface area, due to the porous morphology, and a high thermal stability. These aspects are very promising for the application intended. The sponge-like structure of the CNF may store hydrogen (or other gases) due to physical adsorption in much larger quantities as compared to conventional storage tanks. ©2010 Society for Experimental Mechanics Inc.
Año de publicación:
2011
Keywords:
- Carbon nanotubes foam
- Metal precursor
- Catalytic chemical vapour deposition
- Ferrocene
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Nanopartícula
- Ciencia de materiales
- Ciencia de materiales
Áreas temáticas:
- Ingeniería y operaciones afines
- Química física
- Tecnología de otros productos orgánicos