A unified approach to symmetry for semilinear equations associated to the Laplacian in R<sup>N</sup>
Abstract:
We show radial symmetry of positive solutions to the Hénon equation −Δu=|x|−ℓuq in RN∖{0}, where ℓ≥0, q>0 and satisfy further technical conditions. A new ingbkp_redient is a maximum principle for open subsets of a half space. It allows to apply the Moving Plane Method once a slow decay of the solution at infinity has been established, that is lim|x|→∞|x|γu(x)=L, for some numbers γ∈(0,N−2) and L>0. Moreover, some examples of non-radial solutions are given for [Formula presented] and N≥4. We also establish radial symmetry for related and more general problems in RN and RN∖{0}.
Año de publicación:
2020
Keywords:
- symmetry
- Semi-linear elliptic equation
- Entire solution
- Maximum principle
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Matemáticas aplicadas
Áreas temáticas:
- Análisis