Clasificación de eventos sismo volcánicos usando características psicoacústicas mediante técnicas de aprendizaje automático supervisado y no supervisado
Abstract:
En este trabajo de investigación se desarrolla un clasificador de eventos sismo volcánicos con la capacidad de detectar tres clases de eventos, como son de largo período (LP), volcano tectónico (VT) u Otros, esta última contiene los eventos regionales (RG), híbridos (HB) y deslizamiento de glaciares (IC). La investigación emplea técnicas de aprendizaje supervisado como k-Vecino más cercano (k-NN, por sus siglas en inglés k-Nearest Neighbors) y Árbol de decisiones (DT, por sus siglas en inglés Decision Tree), además emplea técnicas de aprendizaje no supervisado como el Autoencoder, los cuales han sido entrenados con señales proporcionadas del IGEPN (Instituto Geofísico de la Escuela Politécnica Nacional) correspondientes al volcán Cotopaxi, de las cuales se extrajeron once características espectrales representadas en las escalas psicoacústicas Mel, Bark y ERB, además de la escala lineal. a las que se les aplicó un análisis de componentes principales (PCA, por sus siglas en inglés Principal Component Analysis) cuyos resultados indicaron que las características con mayor representatividad de las señales son Disminución, Planitud y Atenuación Espectral, además se validaron los modelos de clasificación con la base de datos del volcán Llaima de Chile proporcionado por OVDAS (Observatorio Vulcanológico de los Andes del Sur). El modelo k-NN y el Autoencoder alcanzaron una exactitud del 98.413% con un Ber del 0.018, mientras que el modelo DT presentó una exactitud del 96.296% con un Ber del 0.042.
Año de publicación:
2022
Keywords:
- APRENDIZAJE SUPERVISADO
- CARACTERÍSTICAS ESPECTRALES
- APRENDIZAJE NO SUPERVISADO
- ESCALAS PSICOACÚSTICAS
Fuente:
Tipo de documento:
Bachelor Thesis
Estado:
Acceso abierto
Áreas de conocimiento:
- Sismología
- Aprendizaje automático
Áreas temáticas:
- Ciencias de la tierra
- Física aplicada
- Métodos informáticos especiales