Classical QSAR and docking simulation of 4-pyridone derivatives for their antimalarial activity


Abstract:

In this work, the minimum energy structures of 22 4-pyridone derivatives have been optimized at Density Functional Theory level, and several quantum molecular, including electronic and thermodynamic descriptors, were computed for these substrates in order to obtain a statistical and meaningful QSAR equation. In this sense, by using multiple linear regressions, five mathematical models have been obtained. The best model with only four descriptors (r2 = 0.86, Q2 = 0.92, S.E.P = 0.38) was validated by the leave-one-out cross-validation method. The antimalarial activity can be explained by the combination of the four mentioned descriptors e.g., electronic potential, dipolar momentum, partition coefficient and molar refractivity. The statistical parameters of this model suggest that it is robust enough to pbkp_redict the antimalarial activity of new possible compounds; consequently, three small chemical modifications into the structural core of these compounds were performed specifically on the most active compound of the series (compound 13). These three new suggested compounds were leveled as 13A, 13B and 13C, and the pbkp_redicted biological antimalarial activity is 0.02 µM, 0.03 µM, and 0.07 µM, respectively. In order to complement these results focused on the possible action mechanism of the substrates, a docking simulation was included for these new structures as well as for the compound 13 and the docking scores (binding affinity) obtained for the interaction of these substrates with the cytochrome bc1, were −7.5, −7.2, −6.9 and −7.5 kcal/mol for 13A, 13B, 13C and compound 13, respectively, which suggests that these compounds are good candidates for its biological application in this illness.

Año de publicación:

2018

Keywords:

  • DFT
  • Nitrogen compounds
  • Molecular descriptors
  • Computational study

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Relación cuantitativa estructura-actividad
  • Farmacología

Áreas temáticas:

  • Química física
  • Química orgánica
  • Farmacología y terapéutica