Classification of subjects with parkinson's disease using finger tapping dataset


Abstract:

Parkinson's disease is the second most common neurodegenerative disorder and affects more than 7 million people globally. In this work, we classify subjects with Parkinson's disease using data from finger-tapping on a keyboard. We use a free database by Physionet with more than 9 million records, preprocessed to delete atypical data. In the feature extraction stage, we obtained 48 features. We use Google Colaboratory to train, validate, and test nine supervised learning algorithms that detect the disease. As a result, we achieve a degree of accuracy higher than 98%.

Año de publicación:

2021

Keywords:

  • Finger Tapping
  • classification
  • Machine learning
  • Parkinson's Disease

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Neurología
  • Aprendizaje automático

Áreas temáticas:

  • Enfermedades
  • Fisiología humana