Classification-based QSAR Models for the Prediction of the Bioactivity of ACE-inhibitor Peptides


Abstract:

Background: Local classification models were used to establish Quantitative Structure− Activity Relationships (QSARs) of bioactive di−, tri− and tetrapeptides, with their capacity to inhibit Angiotensin Converting Enzyme (ACE). These discrete models can thus predict this activity for other peptides obtained from functional foods. These types of peptides allow some foods to be considered nutraceuticals. Method: A database of 313 molecules of di−, tri− and tetrapeptides was investigated and antihypertensive activities of peptides, expressed as log (1/IC50), were separated into two qualitative classes: low activity (inactive) was associated with experimental values under the 66th percentile and active peptides with values above this threshold. Chemicals were divided into a training set, including 70% of the peptides, and a test set for external validation. Genetic algorithms-variable subset selection coupled with the kNN …

Año de publicación:

2018

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Relación cuantitativa estructura-actividad
    • Bioquímica
    • Aprendizaje automático

    Áreas temáticas de Dewey:

    • Farmacología y terapéutica
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 3: Salud y bienestar
    • ODS 12: Producción y consumo responsables
    • ODS 2: Hambre cero
    Procesado con IAProcesado con IA

    Contribuidores: