Classify ecuadorian receipes with convolutional neural networks
Abstract:
This work is a proposal to resolve the problem of identification plates of food through photographs. It involves using a large set of pictures which are processed by convolutional neural networks and parallel processing TensorFlow. The results show a 90% greater accuracy in training and between 63% and 80% in the test. The reason is that Ecuadorian dishes are very similar in the images of some recipes.
Año de publicación:
2020
Keywords:
- Photos
- Parallel
- Food dishes
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación