Coherent assembly of heterostructures in ternary and quaternary carbonitrides


Abstract:

In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).

Año de publicación:

2018

Keywords:

  • magnetron sputtering
  • Structural evolution
  • Heterostructure system

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Técnicas, equipos y materiales