Color correction using 3D Gaussian mixture models


Abstract:

The current paper proposes a novel color correction approach based on a probabilistic segmentation framework by using 3D Gaussian Mixture Models. Regions are used to compute local color correction functions, which are then combined to obtain the final corrected image. The proposed approach is evaluated using both a recently published metric and two large data sets composed of seventy images. The evaluation is performed by comparing our algorithm with eight well known color correction algorithms. Results show that the proposed approach is the highest scoring color correction method. Also, the proposed single step 3D color space probabilistic segmentation reduces processing time over similar approaches. © 2012 Springer-Verlag.

Año de publicación:

2012

Keywords:

  • Gaussian Mixture Models
  • Image Mosaicing
  • Color Correction

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas de Dewey:

    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA