Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
Abstract:
An heuristic proof of the Riemann conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self-adjoint operator whose spectrum may contain the non-trivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show using generalized index-theory arguments, corresponding to the (fractal) spectral dimensions of fractal branes living in Cantorian-fractal space-time, how the required negative traces associated with those derivative operators naturally agree with the zeta function evaluated at the spectral dimensions. The ζ(0)=-1/2 plays a fundamental role. Final remarks on the recent developments in the proof of the Riemann conjecture are made. © 2002 Elsevier Science Ltd. All rights reserved.
Año de publicación:
2002
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas
- Matemáticas
- Cuerpos y fenómenos celestes específicos