Comparative analysis of machine learning prediction models of container ships propulsion power


Abstract:

Regulations on Greenhouse Gas (GHG) ship's emissions and air pollutant are becoming more restrictive. Therefore, a big effort is being put into ship efficiency discussion, specially on predictive models related to route optimization, fuel consumption and air emissions. This paper compares machine learning predictive algorithms, based on the following techniques: least-squares, decision trees and neural networks, to estimate ship propulsion power between two 8400 TEU container ships from the same series. Additionally, the influence of having a predictive algorithm trained with data of its sister ships is invesitgated. The data used in this study were recorded from 2009 to 2014 reaching almost 290,000 entries. The results indicate that random forest regression model and decision trees ensemble models have the best fit for this purpose. It has also confirmed the feasibility of predicting the delivered power of a ship having a machine learning algorithm feed with a sister ship information despite differences in the route and/or operating conditions.

Año de publicación:

2022

Keywords:

  • Machine learning
  • Propulsion power
  • Pbkp_rediction models
  • Container ships
  • fuel consumption
  • Gas emissions
  • marine transport

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Simulación por computadora
  • Aprendizaje automático

Áreas temáticas de Dewey:

  • Métodos informáticos especiales
  • Otras ramas de la ingeniería
  • Programación informática, programas, datos, seguridad
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 13: Acción por el clima
  • ODS 7: Energía asequible y no contaminante
Procesado con IAProcesado con IA