Comparing SVM and SSD for classification of vehicles and pedestrians for edge computing


Abstract:

In the context of video processing, transmission to a remote server is not always possible nor suitable. Video processing on the edge could offer a solution. However, lower processing capacities constraint the number of techniques available for devices, in this work we report the performance of two techniques for classification from video on a minicomputer. The implementation of a real-time vehicle counting and classification system is evaluated through Support Vector Machine (SVM) and the Single Shot Detector Framework (SSD) in a minicomputer. The obtained results show that with a video resolution of 1280x720 pixels and using SVM, precision and recognition rates of 86 % and 94 % are obtained respectively, while with SSD 93 % and 67 % rates are reached with times of processing higher than SVM.

Año de publicación:

2019

Keywords:

  • Support Vector Machine
  • Raspberry PI
  • Performance evaluation
  • Convolutional neural network
  • Computer Vision
  • Single Shot Detection

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Simulación por computadora

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos
  • Física aplicada