Comparing the performance of evolutionary algorithms for permutation constraint satisfaction


Abstract:

This paper presents a systematic comparison of canonical versions of two evolutionary algorithms, namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), for permutation constraint satisfaction (permut-CSP). Permut-CSP is first characterized and a test case is designed. Agents are then presented, tuned and compared. They are also compared with two classic methods (A*and hill climbing). Results show that PSO statistically outperforms all other agents, suggesting that canonical implementations of this technique return the best trade-off between performance and development cost for our test case. © 2011 Authors.

Año de publicación:

2011

Keywords:

  • csp
  • pso
  • constraint satisfaction
  • Genetic Algorithm

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo
  • Algoritmo

Áreas temáticas:

  • Ciencias de la computación