Comparison between the Tikhonov and the Bayesian approaches to calculate regularisation matrices


Abstract:

Regularisation is a well-known technique for working with ill-posed and ill-conditioned problems that have been explored in a variety of different areas, including Bayesian inference, functional analysis, optimisation, numerical analysis and connectionist systems. In this paper we present the equivalence between the Bayesian approach to the regularisation theory and the Tikhonov regularisation into the function approximation theory framework, when radial basis functions networks are employed. This equivalence can be used to avoid expensive calculations when regularisation techniques are employed.

Año de publicación:

2000

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Inferencia estadística
    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad
    • Matemáticas
    • Métodos informáticos especiales