Comparison of Neural Network Models Applied to Human Recognition
Abstract:
In this paper a comparison among conventional Artificial Neural Networks (ANN), Ensemble Neural Networks (ENN) and Modular Granular Neural Networks (MGNNs) is performed. This comparison is performed use 10-fold cross-validation using from 1 to 12 images for the training phase. Some parameters of neural networks are randomly established such as: the number of sub modules (for ensemble and modular granular neural networks), the number of neurons of two hidden layers for each sub module and learning algorithm. A benchmark database is used to observe the neural networks performances.
Año de publicación:
2021
Keywords:
Fuente:

Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Red neuronal artificial
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Cooperativas
- Métodos informáticos especiales