Comparison of architectures for PAPR reduction in OFDM combining pilot symbols with constellation extension


Abstract:

A main drawback of Orthogonal Frequency Division Multiplexing (OFDM) systems is that they suffer from a high Peak-to-Average Power Ratio (PAPR) at the transmitted signal. We propose three different architectures of a PAPR reduction technique combining pilot symbols with constellation extension. These architectures make use of a metric-based amplitude pbkp_redis-tortion algorithm for the constellation extension embedded with orthogonal pilot symbols. Since neither the constellation extension nor the orthogonal pilots degrade the Bit Error Rate (BER), then the combined architectures also guarantee system performance. The three proposals outperform the previous algorithms (SAP and OPS) in terms of PAPR reduction, due to adequately joining pilots symbols with constellation extension. Moreover, the three architectures are examined from a complexity point of view, yielding a comparison in terms of computational load, what is straightforwardly related to implementation energy efficiency. © 2013 IEEE.

Año de publicación:

2013

Keywords:

  • Constellation extension
  • Peak power reduction
  • Orthogonal pilot sequences
  • OFDM

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Comunicación
  • Red informática

Áreas temáticas:

  • Ciencias de la computación