Comparison of three hydraulic property measurement methods
Abstract:
Hydraulic functions of soils may differ depending on the different measuring methods used. The performance of three different methods for measuring soil-hydraulic properties of a heterogeneous field were evaluated. The experiments were conducted using three different sizes of undisturbed soil cores collected systematically along a 31 m long transect of a well drained sandy loam soil having three soil horizons (Ap, 0-0.25 m; C1, 0.25-0.55 m; C2, 0.55-1.00 m). The laboratory studies involved: (1) detailed unsteady drainage-flux experiments performed on fifteen columns of 1 m length and 0.3 m diameter; (2) combined crust test and hot-air methods applied to thirty columns of 0.2 m length and 0.2 m diameter and to a subset of sixty cylinders of 0.1 m length and 0.045 m diameter, respectively, taken from the Ap horizon; and (3) desorption experiments carried out on a total of one hundred eighty cores of 0.051 m length and 0.05 m diameter collected evenly from the three horizons. Mean soil hydraulic properties were inferred from experimental data characterizing either selected depths or the soil profile as a whole. The results revealed considerable differences among estimated mean soil properties as obtained with different measuring techniques. Although the application of scaling theory substantially reduced variation in the measured pressure heads (h) and conductivities (K), the results revealed that scaling parameters determined from soil pressure head were not identical to scaling factors determined from hydraulic conductivity. The results also show that K scaling factors in general were much more variable than h scaling factors, and that the observed variability in scaling factors also depend upon the measurement technique used.
Año de publicación:
1997
Keywords:
- Spatial variability
- Variably-saturated flow
- Measurement techniques
- Soil hydraulic properties
- Similar-media scaling
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Hidráulica
- Hidráulica
Áreas temáticas:
- Física aplicada
- Ingeniería y operaciones afines
- Ingeniería sanitaria