Complete Families of Solutions for the Dirac Equation Using Bicomplex Function Theory and Transmutations
Abstract:
The Dirac equation with a scalar and an electromagnetic potential is considered. In the time-harmonic case and when all the involved functions depend only on two spatial variables it reduces to a pair of decoupled bicomplex Vekua-type equations [8]. Using the technique developed for complex Vekua equations a system of exact solutions for the bicomplex equation is constructed under additional conditions, in particular when the electromagnetic potential is absent and the scalar potential is a function of one Cartesian variable. Introducing a transmutation operator relating the involved bicomplex Vekua equation with the Cauchy-Riemann equation we prove the expansion and the Runge approximation theorems corresponding to the constructed family of solutions. © 2012 Springer Basel AG.
Año de publicación:
2012
Keywords:
- Vekua equation
- pseudoanalytic functions
- Dirac equation
- Transformation operator
- Transmutation
- Bicomplex number
- Runge theorem
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Modelo matemático
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Física