Complete Families of Solutions for the Dirac Equation Using Bicomplex Function Theory and Transmutations


Abstract:

The Dirac equation with a scalar and an electromagnetic potential is considered. In the time-harmonic case and when all the involved functions depend only on two spatial variables it reduces to a pair of decoupled bicomplex Vekua-type equations [8]. Using the technique developed for complex Vekua equations a system of exact solutions for the bicomplex equation is constructed under additional conditions, in particular when the electromagnetic potential is absent and the scalar potential is a function of one Cartesian variable. Introducing a transmutation operator relating the involved bicomplex Vekua equation with the Cauchy-Riemann equation we prove the expansion and the Runge approximation theorems corresponding to the constructed family of solutions. © 2012 Springer Basel AG.

Año de publicación:

2012

Keywords:

  • Vekua equation
  • pseudoanalytic functions
  • Dirac equation
  • Transformation operator
  • Transmutation
  • Bicomplex number
  • Runge theorem

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Modelo matemático
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Física