Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis
Abstract:
The aim of this paper is the study of a class of compound boundary value problems for the homogeneous Dirac equation in two and three dimensions where one of the two boundary conditions (linear conjugation) is loaded. It is shown how the lack of commutativity inherent in the quaternionic product, paradoxically relaxes the conditions to guarantee the solvability of considered problems. Some examples illustrating the results are presented.
Año de publicación:
2017
Keywords:
- Riemann Hilbert problems
- Quaternionic analysis
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis