Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis


Abstract:

The aim of this paper is the study of a class of compound boundary value problems for the homogeneous Dirac equation in two and three dimensions where one of the two boundary conditions (linear conjugation) is loaded. It is shown how the lack of commutativity inherent in the quaternionic product, paradoxically relaxes the conditions to guarantee the solvability of considered problems. Some examples illustrating the results are presented.

Año de publicación:

2017

Keywords:

  • Riemann Hilbert problems
  • Quaternionic analysis

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis