ANFIS-Based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries


Abstract:

This paper describes and evaluates an adaptive neuro-fuzzy inference system (ANFIS)-based energy management system (EMS) of a grid-connected hybrid system. It presents a wind turbine (WT) and photovoltaic (PV) solar panels as primary energy sources, and an energy storage system (ESS) based on hydrogen (fuel cell -FC-, hydrogen tank and electrolyzer) and battery. All of the energy sources use dc/dc power converters in order to connect them to a central DC bus. An ANFIS-based supervisory control system determines the power that must be generated by/stored in the hydrogen and battery, taking into account the power demanded by the grid, the available power, the hydrogen tank level and the state-of-charge (SOC) of the battery. Furthermore, an ANFIS-based control is applied to the three-phase inverter, which connects the hybrid system to grid. Otherwise, this new EMS is compared with a classical EMS composed of state-based supervisory control system based on states and inverter control system based on PI controllers. Dynamic simulations demonstrate the right performance of the ANFIS-based EMS for the hybrid system under study and the better performance with respect to the classical EMS. © 2005-2012 IEEE.

Año de publicación:

2014

Keywords:

  • ANFIS
  • Hybrid system
  • Energy Management System
  • energy storage system
  • renewable energies

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Energía
  • Energía
  • Energía renovable

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería