Constrained maximum likelihood estimation for state space sampled-data models
Abstract:
The Expectation-Maximization algorithm is applied in this paper to estimate state-space sampled-data models including constraints on the location of the poles. Linear quadratic matrix inequalities are used as constraints to obtain a model that preserves properties of the continuous time system, such as stability or damping characteristics. The results of the algorithm are shown in a simulation study.
Año de publicación:
2018
Keywords:
- linear matrix inequalities
- Expectation-maximization
- Constraints
- system identification
- Maximum likelihood
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Estadísticas
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Sistemas