Constrained maximum likelihood estimation for state space sampled-data models


Abstract:

The Expectation-Maximization algorithm is applied in this paper to estimate state-space sampled-data models including constraints on the location of the poles. Linear quadratic matrix inequalities are used as constraints to obtain a model that preserves properties of the continuous time system, such as stability or damping characteristics. The results of the algorithm are shown in a simulation study.

Año de publicación:

2018

Keywords:

  • linear matrix inequalities
  • Expectation-maximization
  • Constraints
  • system identification
  • Maximum likelihood

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Estadísticas
  • Optimización matemática
  • Optimización matemática

Áreas temáticas de Dewey:

  • Sistemas
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA