Continual refoircement learning using real-world data for intelligent prediction of SOC consumption in electric vehicles


Abstract:

The accelerated migration towards electric vehicles (EV) presents several problems to solve. The main aspect is the management and prediction of the state of charge (SOC) in real long-range routes of different variations in altitude for a more efficient energy consumption and vehicle recharge plan. This paper presents the implementation of a new algorithm for SOC estimation based on continuous learning and meta-experience replay (MER) with reservoir sample. It combines the reptile meta-learning algorithm with the experience replay technique for stabilizing the reinforcement learning. The proposed algorithm considers several important factors for the prediction of the SOC in EV such as: speed, travel time, route altimetry, consumed battery capacity, regenerated battery capacity. A modified principal components analysis is used to reduce the dimensionality of the route altimetry data. The experimental results …

Año de publicación:

2022

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Aprendizaje automático
    • Vehículo eléctrico

    Áreas temáticas de Dewey:

    • Métodos informáticos especiales
    • Física aplicada
    • Otras ramas de la ingeniería
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 7: Energía asequible y no contaminante
    • ODS 11: Ciudades y comunidades sostenibles
    • ODS 9: Industria, innovación e infraestructura
    Procesado con IAProcesado con IA

    Contribuidores: