Control System Test Platform for a DC Motor


Abstract:

Currently, control systems are used to improve the behavior of actuators that are part of an equipment or process. However, to enhance their performance, it is necessary to perform tests to evaluate the responses of its operation depending on the type of controller. In this sense, a test platform was developed to compare and optimize the speed control of a DC motor with three types of controllers: Pbkp_redictive Model Control (MPC), Proportional Integral Derivative (PID) and Fuzzy Logic. Data acquisition was performed using the Arduino MEGA board and LabVIEW software. The mathematical model of the three controllers was developed, taking into account the electrical and physical properties of the DC motor. Through MATLAB IDENT, the state space (SS) and transfer function F(S) equations were generated for the MPC and PID controller, respectively; on the other hand, input/output ranges for the Fuzzy Logic controller were input/output ranges defined by assigning belonging functions and linguistic variables. Experimental tests were carried out with these models under no-load and load. Tests performed in vacuum show that performance index with the motor at 100 rpm results in a PID of 0.2245, a Fuzzy Logic of 0.3212 and an MPC of 0.3576. On the other hand, with load at 100 rpm, a PID of 0.2343, a Fuzzy Logic of 0.3871 and an MPC of 0.3104 were obtained. It was determined that the Fuzzy Logic controller presents a higher over impulse; the PID and MPC have a faster stabilization time and with negligible over impulses. Finally, the MPC controller presents a better performance index analysis according to the Integral Square Error criterion (ISE).

Año de publicación:

2022

Keywords:

  • Modelization
  • dc motor
  • Pid
  • MPC
  • fuzzy logic

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema de control

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería