Controllability of linear time varying systems: new algebraic criteria


Abstract:

This paper presents algebraic rank conditions for the complete controllability of the system. x(t)= A(t)x(t)+ Bu(t)= ai (t)Aix(t)+ Bu(t). xερ0n,uερ0l. Assuming A(·) is locally integrable on ρ0, the fundamental solution of x(t)= A(t)x(t) is explicitly calculated in terms of functions ai(t) for tε [0,T] by using Lie algebra theory. Then by using the Cayley-Hamilton theorem, two different time invariant controllability matrices are derived. Conditions for complete controllability matrices are derived. Conditions for complete controllability of the above systems are derived in terms of the rank of these matrices.

Año de publicación:

1993

Keywords:

    Fuente:

    googlegoogle
    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Sistema de control
    • Teoría de control
    • Optimización matemática

    Áreas temáticas de Dewey:

    • Ingeniería y operaciones afines
    • Otras ramas de la ingeniería
    • Álgebra
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA

    Contribuidores: