Corrosion resistance of AA2024-T3 coated with graphene/sol-gel films
Abstract:
Abstract. Graphene is a two-dimensional network of carbon atoms with optimal thermal, electronic and chemical stability properties that promise different and versatile applications in various fields including the protection of metals from corrosion phenomena. For this reason in this paper graphene was employed and studied as an agent dopand incorporated into hybrid sol-gel coatings to enhance their resistance in saline media and to improve the durability of these films. Graphene was obtained by using an electrochemical method involving oxidation and reduction reactions in a sodium lauryl sulfate solution. On the other hand, the hybrid sol-gel was synthesized from the combination of inorganic and organic precursors, zirconium (IV) n-propoxide (TPOZ) and 3- glycidoxipropiltrimetoxysilane (GLYMO) respectively. In order to obtain the coating system (graphene/sol-gel) two different procedures were applied onto clean aluminum plates: a) the electrodeposition of graphene and b) the graphene-doped sol-gel coating. Differential scanning calorimetry, scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the results, which demonstrate an improvement of the corrosion properties of the films with the incorporation of graphene compounds.
Año de publicación:
2015
Keywords:
- EIS
- AA2024-t3
- Electrochemical synthesis
- Graphene
- Sol-gel
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencia de materiales
- Ciencia de materiales
Áreas temáticas:
- Ingeniería y operaciones afines