Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
Applied Soft Computing(1)
Computers in Biology and Medicine(1)
Energies(1)
Health and Technology(1)
Área temáticas
Ciencias de la computación(3)
Ciencias sociales(1)
Economía(1)
Instrumentos de precisión y otros dispositivos(1)
Medicina forense; incidencia de enfermedades(1)
An autonomic cycle of data analysis tasks for the supervision of HVAC systems of smart building
ReviewAbstract: Early fault detection and diagnosis in heating, ventilation and air conditioning (HVAC) systems mayPalabras claves:Autonomic computing, Building management systems, HVAC system, Supervisory systemAutores:Ardila D., Avendaño A., De Mesa J.G., Garcès-Jimènez A., Gómez-Pulido J.M., José Lisandro Aguilar Castro, Macias F., White C.Fuentes:scopusAn incremental learning approach to pbkp_rediction models of SEIRD variables in the context of the COVID-19 pandemic
ArticleAbstract: Several works have proposed pbkp_redictive models of the SEIRD (Susceptible, Exposed, Infected, RecoPalabras claves:covid-19, Machine learning, pbkp_rediction modelAutores:Ardila D., Camargo E., Francklin Rivas, José Lisandro Aguilar Castro, Quintero Y.Fuentes:scopusAnalysis of the socioeconomic impact due to COVID-19 using a deep clustering approach
ArticleAbstract: One of the main problems that countries are currently having is being able to measure the impact ofPalabras claves:Clustering evolution, covid-19, Socioeconomic model, Time series pbkp_rediction model, Unsupervised modelAutores:Ardila D., Cortes S., José Lisandro Aguilar Castro, Quintero Y.Fuentes:scopusMachine learning models for the pbkp_rediction of the SEIRD variables for the COVID-19 pandemic based on a deep dependence analysis of variables
ArticleAbstract: The SEIRD (Susceptible, Exposed, Infected, Recovered, and Dead) model is a mathematical model basedPalabras claves:covid-19, Data dependence analysis, Machine learning, pbkp_rediction modelAutores:Ardila D., Camargo E., Francklin Rivas, José Lisandro Aguilar Castro, Quintero Y.Fuentes:scopus