Mostrando 10 resultados de: 20
Filtros aplicados
Publisher
Computing in Cardiology(10)
Computer Methods and Programs in Biomedicine(1)
Computers in Biology and Medicine(1)
Computers in Cardiology(1)
Expert Systems with Applications(1)
Área temáticas
Medicina y salud(8)
Enfermedades(5)
Farmacología y terapéutica(3)
Métodos informáticos especiales(2)
Tecnología (Ciencias aplicadas)(2)
Área de conocimiento
Aprendizaje automático(10)
Ciencias de la computación(10)
Algoritmo(4)
Enfermedad cardiovascular(4)
Procesamiento de señales(2)
Origen
scopus(20)
Classifying cardiac arrhythmic episodes via data compression
ArticleAbstract: The rapid development of the cloud computing technology is favoring the emergence of new platforms oPalabras claves:Automatic classification, Cardiac arrhythmic episode, data compression, Implantable cardioverter defibrillator, Kernel methodAutores:Chavarria-Asso F., GarcÍa-Alberola A., García-García A., Jose Luis Rojo-Álvarez, Lillo-Castellano J.M., Martin-Mendez M., Mora-Jimnez I.Fuentes:scopusComputational efficiency and accuracy for QRS detection algorithms on clinical long term multilead monitoring
Conference ObjectAbstract: A number of relevant clinical measurements are derived from QRS detection. As a consequence, the fasPalabras claves:Autores:Blanco-Velasco M., Flores-Yepes J.A., GarcÍa-Alberola A., Gimeno-Blanes F.J., Jose Luis Rojo-Álvarez, Melgarejo-Meseguer F.M., Siroky J., Villalba E.E.Fuentes:scopusBenchmarking of a T-wave alternans detection method based on empirical mode decomposition
ArticleAbstract: Background and objective: T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on aPalabras claves:bootstrap resampling, electrocardiogram (ECG), Empirical Mode Decomposition (EMD), Repolarization, Spectral method (SM), T-wave alternans (TWA)Autores:Blanco-Velasco M., Cruz-Roldán F., GarcÍa-Alberola A., Goya-Esteban R., Jose Luis Rojo-ÁlvarezFuentes:scopusBig-data analytics for Arrhythmia Classification using data compression and kernel methods
Conference ObjectAbstract: Big data analytics is broadly used today in multiple research fields to discover and analyze hiddenPalabras claves:Autores:GarcÍa-Alberola A., Jose Luis Rojo-Álvarez, Lillo-Castellano J.M., Montserrat-García-De-Pablo M., Mora-Jimnez I., Moreno-González R.Fuentes:scopusAn approach to new methods for digital signal processing on optical mapping sequences and electrical mapping
Conference ObjectAbstract: Optical Mapping (OM) sequences represent a very useful tool for registering cardiac bioelectric actiPalabras claves:Autores:Caulier-Cisterna R.P., GarcÍa-Alberola A., Garcia-Quintanilla J., Jose Luis Rojo-Álvarez, Mora-Jimnez I., Moreno-Planas J., Muoz-Romero S., Sanromán-Junquera M., Soguero-Ruiz C.Fuentes:scopusAn interoperable system toward cardiac risk stratification from ECG monitoring
ArticleAbstract: Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signalPalabras claves:ARCHETYPES, Cardiovascular risk stratification, Electronic health records, Heart rate turbulence, Heart Rate Variability, Semantic Interoperability, web systemAutores:Díez-Mazuela D., Fernández T.Q., GarcÍa-Alberola A., García-García A., Jose Luis Rojo-Álvarez, Mora-Jimnez I., Ramos-López J., Soguero-Ruiz C.Fuentes:scopusA group lasso based method for automatic physiological rhythm analysis
Conference ObjectAbstract: Physiological rhythms arise from nonlinear interactions between biological mechanisms and environmenPalabras claves:Autores:Barquero-Perez O., Figuera-Pozuelo C., GarcÍa-Alberola A., Goya-Esteban R., Jose Luis Rojo-ÁlvarezFuentes:scopusCardiac Fibrosis Detection Applying Machine Learning Techniques to Standard 12-Lead ECG
Conference ObjectAbstract: Hypertrophic cardiomyopathy (HCM) is a myocardial disorder that affects 0.2% of the population and iPalabras claves:Autores:GarcÍa-Alberola A., Gimeno-Blanes F.J., Gimeno-Blanes J.R., Jose Luis Rojo-Álvarez, Melgarejo-Meseguer F.M., Salar-Alcaraz M.E.Fuentes:scopusFeature selection using support vector machines and bootstrap methods for ventricular fibrillation detection
Conference ObjectAbstract: Early detection of ventricular fibrillation (VF) is crucial for the success of the defibrillation thPalabras claves:Arrhythmia classification, Bootstrap, feature selection, SUPPORT VECTOR MACHINES, Ventricular fibrillation detectionAutores:Alonso-Atienza F., Camps-Valls G., GarcÍa-Alberola A., Jose Luis Rojo-Álvarez, Rosado-Muñoz A., Vinagre J.J.Fuentes:scopusEnabling heart self-monitoring for all and for AAL-Portable device within a complete telemedicine system
ArticleAbstract: During the last decades there has been a rapidly growing elderly population and the number of patienPalabras claves:Arterial blood pressure, Atrial fibrillation detector, e-Health, eCG, Portability, QRS detector, sensorsAutores:Bleda A.L., Corral J., GarcÍa-Alberola A., Gimeno-Blanes F.J., Jose Luis Rojo-Álvarez, Maestre-Ferriz R., Melgarejo-Meseguer F.M., Ruiz R.Fuentes:scopus