Mostrando 7 resultados de: 7
Filtros aplicados
Publisher
Proceedings - 2019 Prognostics and System Health Management Conference, PHM-Paris 2019(2)
2016 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2016 - Proceedings(1)
Expert Systems with Applications(1)
Fuzzy Sets and Systems(1)
IEEE Transactions on Instrumentation and Measurement(1)
Área temáticas
Métodos informáticos especiales(5)
Ciencias de la computación(3)
Física aplicada(3)
Otras ramas de la ingeniería(1)
A fuzzy transition based approach for fault severity pbkp_rediction in helical gearboxes
ArticleAbstract: Rotating machinery is an important device supporting manufacturing processes, and a wide research woPalabras claves:Fault detection and diagnosis, Fault severity classification, Fault severity pbkp_rediction, Fuzzy pbkp_rediction, Fuzzy transition probabilityAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Fannia Pacheco, Jose Valante De Oliveira, Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez LojaFuentes:googlescopusA methodological framework using statistical tests for comparing machine learning based models applied to fault diagnosis in rotating machinery
Conference ObjectAbstract: Selecting an adequate machine learning model, e.g. for feature selection or classification, is a verPalabras claves:Autores:Diego Cabrera Mendieta, Diego R. Cabrera, Fannia Pacheco, Jose Valante De Oliveira, Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez LojaFuentes:googlescopusAccelerometer Placement Comparison for Crack Detection in Railway Axles Using Vibration Signals and Machine Learning
Conference ObjectAbstract: In this paper, a methodology for accelerometer placement comparison for crack detection in railway aPalabras claves:Crack detection, feature selection, Machine learning, railway, Vibration signalAutores:Alonso H.R., Diego R. Cabrera, Jean Carlo Macancela Poveda, Li C., Mariela Cerrada Lozada, Pablo M. Lucero, René-Vinicio Sánchez LojaFuentes:googlescopusGearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
ArticleAbstract: Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratoPalabras claves:Acoustic Emission, data fusion, deep learning, gearbox, Vibration signalAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Grover Zurita, Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez Loja, Vásquez R.E.Fuentes:googlescopusInfluence of Accelerometer Position on Gearbox Fault Severity Classification through Evaluation of Deep Learning Models
Conference ObjectAbstract: Gears are key elements in mechanical transmission systems. Fault diagnosis in gearboxes is a cuttingPalabras claves:Bayesian optimization, Fault severity classification, hyperparameters search, K-S test, LSTM networksAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Jean Carlo Macancela Poveda, Li C., Mariela Cerrada Lozada, Pablo M. Lucero, René-Vinicio Sánchez Loja, Villacrés S.Fuentes:googlescopusSliced Wasserstein cycle consistency generative adversarial networks for fault data augmentation of an industrial robot
ArticleAbstract: We investigate the role of the loss function in cycle consistency generative adversarial networks (CPalabras claves:Conditional cycle consistency generative adversarial networks, Cycle consistency generative adversarial networks, Generative Adversarial Networks, industrial robots, Scarce faulty data augmentation, Sliced Wasserstein distanceAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Li C., Pu Z., Valente de Oliveira J.Fuentes:googlescopusTheoretical Investigations on Kurtosis and Entropy and Their Improvements for System Health Monitoring
ArticleAbstract: System health monitoring as the basis of prognostics and health management (PHM) aims to explore heaPalabras claves:condition monitoring, Fault diagnosis, prognostics and health management (PHM), system health monitoring, weighted residual regressionAutores:Diego R. Cabrera, Guo J., Li C., Wang D., Zhong J.Fuentes:scopus