Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Conference Object(4)
Área temáticas
Física aplicada(3)
Métodos informáticos especiales(3)
Ingeniería y operaciones afines(2)
Área de conocimiento
Aprendizaje automático(3)
Aprendizaje profundo(1)
Ciencias de la computación(1)
Ingeniería mecánica(1)
Vibración(1)
Año de Publicación
2019(4)
Deep Learning-Based Gear Pitting Severity Assessment Using Acoustic Emission, Vibration and Currents Signals
Conference ObjectAbstract: A method for gearbox pitting faults severity classification using Deep Learning techniques is reportPalabras claves:Acoustic Emission, deep learning, Faults detection, gearbox, Long short term memory networksAutores:Diego R. Cabrera, Jose Valante De Oliveira, Li C., Mariela Cerrada Lozada, René-Vinicio Sánchez Loja, Ruben Medina MolinaFuentes:scopusAccelerometer Placement Comparison for Crack Detection in Railway Axles Using Vibration Signals and Machine Learning
Conference ObjectAbstract: In this paper, a methodology for accelerometer placement comparison for crack detection in railway aPalabras claves:Crack detection, feature selection, Machine learning, railway, Vibration signalAutores:Alonso H.R., Diego R. Cabrera, Jean Carlo Macancela Poveda, Li C., Mariela Cerrada Lozada, Pablo M. Lucero, René-Vinicio Sánchez LojaFuentes:googlescopusMultilayer Gated Recurrent Unit for Spur Gear Fault Diagnosis
Conference ObjectAbstract: As an important transmission component, the spur gearbox may cause great losses if it fails, so faulPalabras claves:Fault diagnosis, gated recurrent unit, spur gear, Vibration signalAutores:Li C., René-Vinicio Sánchez Loja, Tao Y., Wang X., Yang S.Fuentes:googlescopusInfluence of Accelerometer Position on Gearbox Fault Severity Classification through Evaluation of Deep Learning Models
Conference ObjectAbstract: Gears are key elements in mechanical transmission systems. Fault diagnosis in gearboxes is a cuttingPalabras claves:Bayesian optimization, Fault severity classification, hyperparameters search, K-S test, LSTM networksAutores:Diego Cabrera Mendieta, Diego R. Cabrera, Jean Carlo Macancela Poveda, Li C., Mariela Cerrada Lozada, Pablo M. Lucero, René-Vinicio Sánchez Loja, Villacrés S.Fuentes:googlescopus