Mostrando 7 resultados de: 7
Filtros aplicados
Publisher
Applied Energy(1)
Asia-Pacific Power and Energy Engineering Conference, APPEEC(1)
IEEE Transactions on Neural Networks and Learning Systems(1)
IEEE Transactions on Sustainable Energy(1)
International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018(1)
Área temáticas
Ciencias de la computación(5)
Física aplicada(2)
Métodos informáticos especiales(2)
Otras ramas de la ingeniería(1)
Área de conocimiento
Energía renovable(7)
Energía solar(1)
Fotovoltaica(1)
Meteorología(1)
Sensores remotos(1)
Origen
scopus(7)
Automatic hourly solar forecasting using machine learning models
ArticleAbstract: Owing to its recent advance, machine learning has spawned a large collection of solar forecasting woPalabras claves:Automatic machine learning, Solar forecasting, R caret packageAutores:Dazhi Yang, Srinivasan D., Yagli G.M.Fuentes:scopusAn ensemble machine learning based approach for constructing probabilistic PV generation forecasting
Conference ObjectAbstract: Photovoltaic (PV) generation forecasting plays an important role in accommodating more distributed PPalabras claves:pbkp_rediction interval, Photovoltaic, probabilistic forecasting, Quantile regression, Stochastic gradient boosting machine, UNCERTAINTYAutores:Carlos David Rodríguez-Gallegos, Gandhi O., Quan H., Sharma A., Srinivasan D., Zhang W.Fuentes:scopusA Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids
ReviewAbstract: The high penetration level of renewable energy is thought to be one of the basic characteristics ofPalabras claves:computational intelligence, Decision-making, Neural Network (NN), pbkp_rediction interval (PI), uncertainty quantification, Wind powerAutores:Dazhi Yang, Khosravi A., Quan H., Srinivasan D.Fuentes:scopusDeep-learning-based probabilistic estimation of solar PV soiling loss
ArticleAbstract: Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the inPalabras claves:Convolutional neural network, deep learning, Photovoltaic (PV) system, probabilistic estimation, solar PV panel soilingAutores:Carlos David Rodríguez-Gallegos, Gandhi O., Liu S., Quan H., Srinivasan D., Zhang W.Fuentes:scopusCan we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?
ArticleAbstract: • Independently generated ground-based and satellite-based forecasts are compared. • The joint distrPalabras claves:Ensemble forecasting, Machine learning, Satellite-derived irradiance, solar forecastingAutores:Dazhi Yang, Gandhi O., Srinivasan D., Yagli G.M.Fuentes:scopusEnsemble solar forecasting using data-driven models with probabilistic post-processing through GAMLSS
ArticleAbstract: Forecast performance of data-driven models depends on the local weather and climate regime, which maPalabras claves:Ensemble forecasting, Forecast combination, Machine learning, Post-processing, probabilistic forecasting, TIME SERIESAutores:Dazhi Yang, Srinivasan D., Yagli G.M.Fuentes:scopusUsing Combinational Methods for Forecast Improvement in PV Power Plants
Conference ObjectAbstract: Power generation based on photovoltaic systems are one of the crucial energy resources of the futurePalabras claves:Autores:Dazhi Yang, Monika , Srinivasan D., Yagli G.M.Fuentes:scopus