Mostrando 5 resultados de: 5
Filtros aplicados
Publisher
AIMS Mathematics(1)
Discrete Mathematics Letters(1)
Journal of Mathematical Chemistry(1)
Journal of Mathematics(1)
Mathematical Methods in the Applied Sciences(1)
Área temáticas
Principios generales de matemáticas(3)
Álgebra(3)
Análisis(2)
Ciencias de la computación(1)
Matemáticas(1)
Área de conocimiento
Ecuación diferencial parcial(1)
Matemáticas aplicadas(1)
Modelo matemático(1)
Teoría de grafos(1)
Origen
scopus(5)
Boundary value problems for the lamé-navier system in fractal domains
ArticleAbstract: The aim of this paper is to establish a representation formula for the solutions of the Lamé-NavierPalabras claves:Clifford analysis, fractal boundaries, Lamé-Navier system, Linear elasticityAutores:García A.M., Mendez-Bermudez J.A., Ricardo Abreu Blaya, Sigarreta J.M.Fuentes:scopusOn Ostrowski Type Inequalities for Generalized Integral Operators
ArticleAbstract: It is well known that mathematical inequalities have played a very important role in solving both thPalabras claves:Autores:Bosch P., Cruz M.P., Ricardo Abreu Blaya, Rodríguez J.M., Sigarreta J.M.Fuentes:scopusOn the conformable fractional logistic models
ArticleAbstract: In this paper, we use a conformable fractional derivative (Formula presented.), with kernel (FormulaPalabras claves:Applications, differential equations with fractional derivatives, fractional conformable derivatives, Fractional integralsAutores:Fleitas A., Reyes R., Ricardo Abreu Blaya, Rodríguez J.M., Sigarreta J.M., Valdes J.E.N.Fuentes:scopusInequalities on the generalized atom bond connectivity index
ArticleAbstract: The atom-bond connectivity and the generalized atom-bond connectivity indices have shown to be usefuPalabras claves:Atom-bond connectivity index, Degree-based topological indices, Generalized atom-bond connectivity indexAutores:Reyes R., Ricardo Abreu Blaya, Rodríguez J.M., Sigarreta J.M.Fuentes:scopusRecent results on hyperbolicity on unitary operators on graphs
ReviewAbstract: For a geodesic metric space X and for x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the unPalabras claves:central graph, geodesics, Gromov hyperbolicity, hyperbolic graph, hyperbolic space, hyperbolicity constantAutores:Jesús Alejandro Ortega Méndez, Reyes R., Rodríguez J.M., Sigarreta J.M.Fuentes:scopus