Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
Proceedings of SPIE - The International Society for Optical Engineering(2)
Applied Geography(1)
Environments - MDPI(1)
Área temáticas
Ingeniería sanitaria(3)
Agricultura y tecnologías afines(1)
Economía de la tierra y la energía(1)
Enfermedades(1)
Estructuras públicas(1)
Área de conocimiento
Ciencia ambiental(2)
Epidemiología(2)
Salud pública(2)
Sensores remotos(2)
Análisis de datos(1)
Comparison of satellite remote sensing data in the retrieve of PM10 air pollutant over Quito, Ecuador
Conference ObjectAbstract: Most of the large cities have an air quality network to measure air pollution including PM10. HowevePalabras claves:Air quality, Landsat, Modis, Pm10, QUITOAutores:César Iván Alvarez-Mendoza, Lenin Javier Ramírez Cando, Nelly Torres, Teodoro A.C., Valeria VivancoFuentes:googlescopusAssessment of remote sensing data to model PM10 estimation in cities with a low number of air quality stations: A case of study in Quito, Ecuador
ArticleAbstract: The monitoring of air pollutant concentration within cities is crucial for environment management anPalabras claves:air quality modeling, Air Quality Monitoring, LUR, Pm10, remote sensingAutores:César Iván Alvarez-Mendoza, Nelly Torres, Teodoro A.C., Valeria VivancoFuentes:googlescopusModeling the prevalence of respiratory chronic diseases risk using satellite images and environmental data
Conference ObjectAbstract: Several studies have demonstrated that air quality and weather changes have influence in the prevalePalabras claves:Air quality, health respiratory risk, Landsat-8, logistic regression model, QUITOAutores:Andres Benitez, César Iván Alvarez-Mendoza, Fonseca J., Freitas A., Juan Ordonez, Teodoro A.C.Fuentes:googlescopusSpatial estimation of chronic respiratory diseases based on machine learning procedures—an approach using remote sensing data and environmental variables in quito, Ecuador
ArticleAbstract: Over the last few years, the use of remote sensing data in different applications such as estimationPalabras claves:Machine learning, QUITO, remote sensing, Respiratory disease, Spatial modelsAutores:César Iván Alvarez-Mendoza, Fonseca J., Freitas A., Teodoro A.C.Fuentes:googlescopus