Mostrando 10 resultados de: 11
Filtros aplicados
Subtipo de publicación
Article(11)
Publisher
Ars Combinatoria(2)
Acta Mathematica Sinica, English Series(1)
Australasian Journal of Combinatorics(1)
Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie(1)
Journal of Discrete Mathematical Sciences and Cryptography(1)
Área temáticas
Ciencias de la computación(7)
Matemáticas(2)
Geometría(1)
Ingeniería y operaciones afines(1)
Métodos informáticos especiales(1)
Área de conocimiento
Optimización matemática(11)
Origen
scopus(11)
Computation of edge C <inf>4</inf>-irregularity strength of Cartesian product of graphs
ArticleAbstract: If every edge in the graph G is also an edge of a subgraph of G isomorphic to a given graph H we sayPalabras claves:05C70, 05C78, Edge H-irregularity strength, Generalized prism, Grid graph, H-irregular edge labelingAutores:Ahmad A., Martin Bača, Semaničova-Fenovciková A.Fuentes:scopusComputing the metric dimension of Kayak Paddles graph and cycles with chord
ArticleAbstract: A set of vertices Wis a resolving set of a graph G if every two vertices ofG have distinct representPalabras claves:Kayak paddles, Metric dimension, Resolving set, roboticsAutores:Ahmad A., Martin Bača, Sultan S.Fuentes:scopusOn Edge Irregular Total Labeling of Categorical Product of Two Cycles
ArticleAbstract: An edge irregular total k-labeling φ:V(G)∪E(G)→{1,2,...,k} of a graph G=(V,E) is a labeling of vertiPalabras claves:Edge irregular total labeling, Irregularity strength, The categorical product of cycles, total edge irregularity strengthAutores:Ahmad A., Martin Bača, Siddiqui M.K.Fuentes:scopusOn edge irregularity strength of Toeplitz graphs
ArticleAbstract: An edge irregular k-labeling of a graph G is a labeling of the vertices of G with labels from the sePalabras claves:Edge irregularity strength, irregular assignment, Irregularity strength, Toeplitz graphsAutores:Ahmad A., Martin Bača, Nadeem M.F.Fuentes:scopusOn vertex irregular total labelings
ArticleAbstract: A vertex irregular total labeling σ of a graph G is a labeling of vertices and edges of G with labelPalabras claves:Circulant graph, Jahangir graph, total vertex irregularity strength, Vertex irregular total labelingAutores:Ahmad A., Martin BačaFuentes:scopusMINIMAL DOUBLY RESOLVING SETS OF ANTIPRISM GRAPHS AND MOBIUS LADDERS
ArticleAbstract: Consider a simple connected graph G = (V(G),E(G)), where V(G) represents the vertex set and E(G) repPalabras claves:Antiprism graph, Metric dimension, Minimal doubly resolving set, Mobius ladder., Resolving setAutores:Ahmad A., Imran M., Martin Bača, Sultan S.Fuentes:scopusMinimal doubly resolving sets of necklace graph
ArticleAbstract: Consider a simple connected undirected graph G = (V;E), where V represents the vertex set and E reprPalabras claves:Metric dimension, Minimal doubly resolving set, Necklace graph, Resolving setAutores:Ahmad A., Martin Bača, Sultan S.Fuentes:scopusIrregular total labeling of disjoint union of prisms and cycles
ArticleAbstract: We investigate two modifications of the well-known irregularity strength of graphs, namely, a totalPalabras claves:Autores:Ahmad A., Martin Bača, Siddiqui M.K.Fuentes:scopusVertex-antimagic labelings of regular graphs
ArticleAbstract: Let G = (V,E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertexPalabras claves:Regular graph, Super vertex-antimagic total labeling, vertex-antimagic edge labelingAutores:Ahmad A., Ali K., Kovář P., Martin Bača, Semaničova-Fenovciková A.Fuentes:scopusTotal edge irregularity strength of a categorical product of two paths
ArticleAbstract: An edge irregular total k-labeling of a graph G = (V, E) is a labeling f: V ∪ E → {1,2,-,k} such thaPalabras claves:Categorical product, Edge irregular total labeling, Irregularity strength, total edge irregularity strengthAutores:Ahmad A., Martin BačaFuentes:scopus